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ARBITRARY ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC
PROBLEMS ON POLYGONAL MESHES WITH ARBITRARY REGULAR
SOLUTION
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1 Department of Mathematics “F. Enriques” at the University of Milan, Italy

2 Los Alamos National Laboratory, Theoretical Division, MS B284, Los Alamos, NM, 87545
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Abstract. We present a new family of mimetic methods on unstructured polygonal meshes for
the diffusion problem in primal form for solution with regularity Cα(Ω) for any integer α ≥ 0.
These methods are derived from a local consistency condition that is exact for polynomials
of degree m = α + 1. The degrees of freedom are (a) solution and derivative values of
various degree at the mesh vertices and (b) solution moments inside polygons. Theoretical
results concerning the convergence of the method are briefly summarized and an optimal
error estimate is given in a mesh-dependent norm that mimics the energy norm. Numerical
experiments confirm the convergence rate that is expected from the theory.

Keywords: Diffusion problem, mimetic finite difference method, polygonal mesh, generalized
mesh, high-order scheme

1. INTRODUCTION

The mimetic discretizations have been developed since the early eighties to incorpo-
rate important properties of physical and mathematical models into the discrete framework.
Such discretizations in mixed or mixed-hybrid form [14] and its earlier version, the support-
operator method [21,27] has been successfully employed for solving problems of electro-
magnetism [22] gas dynamics [16] linear diffusion (see, e.g.,[7,11,15,18,20,24,26], and ref-
erences therein), convection-diffusion [4,19], Stokes [5,6,8], elasticity [3], Reissner-Mindlin
plates [12], eigenvalues [17], two-phase flows in porous media [1,25]. A posteriori estima-
tors were developed in [2,10] and monotonicity criteria were investigated in [23]. Here, we
consider the possibility of building a discrete method that incorporates a given degree α ∈ N
of Cα global regularity into the discrete solution. In the conforming finite element method,
the discrete spaces used are globally C0 and the construction of finite element methods with
a regularity that is higher than one is prohibitive. In the mimetic approach, we can build
highly regular methods that are associated to a discrete space with arbitrary Cα regularity.
To this end, we consider a mimetic construction that depends on two integer parameters, the
polynomial degree m and the regularity index α. The parameter m determines the degree
of the polynomials that satisfy the consistency condition and therefore the O(hm) order of
convergence of the method, provided the solution is sufficiently regular. The parameter α de-
termines the global smoothness of the underlying discrete space, that is of Cα regularity across
the edges of the mesh. Although, in principle, we can formulate schemes with m ≥ α+1, we
will concentrate to methods satisfying the minimal condition m = α + 1.



The outline of the paper is as follows. In Section 2 we introduce the mathematical
model and we present the formulation of the nodal mimetic finite difference method. In Sec-
tion 3 we briefly summarize the regularity assumptions on the mesh and the convergence
result. In Section 4 we illustrate the behavior of the method in solving a representative test
case. In Section 5 we offer final remarks and conclusions.

2. The mathematical model and its mimetic formulation

Let us consider the steady diffusion problem for the scalar solution field u given by

div(K∇u) = f in Ω, (1)

u = g on Γ, (2)

where Ω ⊂ R2 is the computational domain, Γ is the boundary of Ω, K is the diffusion tensor
describing the material properties, f is the forcing term and g the boundary function that
defines the non-homogeneous Dirichlet boundary condition.

Let us consider the functional space H1
g (Ω) = {v ∈ H1(Ω), v|Γ = g}. Problem (1)-(2) can

be restated in the variational form:

find u ∈ H1
g (Ω) such that

∫

Ω

K∇u·∇v dV =

∫

Ω

fv dV ∀v ∈ H1
0 (Ω). (3)

The existence and uniqueness of the weak solution follows from continuity and coercivity of
the bilinear form in (3) uner suitable regularity assumptions on K and the domain Ω.

We approximate (3) on a sequence of meshes {Ωh}h that partition the domain Ω; the
meshes are labeled by h, which is the mesh size and is defined by h = maxP∈Ωh

hP where
hP = supx,y∈P |x− y| is the diameter of the polygonal cell P ∈ Ωh.

On each mesh Ωh, we approximate the functional space H1(Ω) ∩ C0(Ω) by the linear
space Vh, a collection of discrete scalar fields, also referred to as grid functions. Grid func-
tions are properly defined through the degrees of freedom, which can be interpreted as nodal
values of functions and derivatives of functions in the continuum setting, and integral moment
associated with the mesh cells, cf. the definitions given in subsection 2.3. Then, we introduce
the bilinear form Ah

(·, ·) : Vh×Vh → R that approximates the left-hand side of (3) and the
bilinear form

(·, ·)
h

: L2(Ω)× Vh → R that approximates the right-hand side of (3), i.e.,

Ah

(
uI, vI

) ≈
∫

Ω

K∇u·∇v dV,
(
f, vI

)
h
≈

∫

Ω

fv dV.

In the nodal mimetic finite difference formulation, the Dirichlet boundary conditions are es-
sential and are incorporated through the subspace Vh,g of Vh. The space Vh,g is formed by
the discrete scalar fields of Vh whose degrees of freedom associated with the boundary edges
approximate the boundary datum g. Finally, the mimetic finite difference method for (3) reads:

Find uh ∈ Vh,g such that:

Ah

(
uh, vh

)
=

(
f, vh

)
h

∀vh ∈ Vh,0. (4)

The well-posedness of the numerical approximation (4) follows from the coercivity and the
continuity properties of the bilinear form Ah

(·, ·).



2.1. Notation

We denote a generic mesh vertex by v and its coordinate vector by xv, a generic mesh
edge by f and its length by |f|, the area of polygon P by |P|, and its boundary by ∂P. The
orientation of each mesh edge f is reflected by its unit normal vector nf , which is fixed once
and for all. For any polygon P and any edge f of ∂P, we define the unit normal vector nP,f

that points out of P. Clearly, the sign sP,f = nf ·nP,f may be either +1 or−1 depending on the
mutual orientation of f and ∂P. We denote the set of the mesh vertices by V . In the following
we assume that the tensor K is constant.

2.2. The mimetic bilinear form Ah,P

The mimetic bilinear form Ah is given by the assembly of the local bilinear forms
Ah,P : H1(P) × H1(P) → R, which are defined for each polygonal cell P. Each bilinear
form Ah,P is an approximation of the integral

AP

(
u, v

)
=

∫

P

∇u · K∇v dV, u, v ∈ H1(P). (5)

Such approximation is based on the degrees of freedom of u and v and satisfy an exactness
property that involves the functional space Pm(P) of the polynomials of degree up to m and
the functional space

V m =
{
v ∈ H1(P) ∩ Cα(P) such that v|f ∈ Pm(f) ∀ f ∈ ∂P

}
.

The mimetic bilinear form Ah,P is such that:

(i) it is symmetric with respect to its two arguments;

(ii) it satisfies the exactness condition:

Ah,P

(
pI, vI

)
= AP

(
p, v

)
for all p ∈ Pm(P), v ∈ V m, (6)

where pI and vI are denote the interpolation of p and v with respect to the degrees of
freedom of Vh,P.

Let us further develop equation (6). We integrate by parts the right-hand side of equation (5)
and we obtain:

AP

(
p, v

)
= −

∫

P

div(K∇p) v dV +
∑

f∈∂P

∫

f

(nP,f · K∇p)v dS. (7)

As p is a polynomial of degree m and K is a constant tensor field on P, the divergence term, i.e.,
div(K∇p) is a polynomial of degree (m−2). Let us consider the basis {ϕk,i}k=0,...,m−2,i=0,...,k

of the polynomial space Pm(P). This basis collects (m − 1) sets of polynomials of degree
k = 0, . . . , m−2, i.e., {ϕk,i}i=0,...,k, each one of which being a basis of the set of polynomials
of degree exactly equal to k. We express div(K∇p) as a linear combination of these basis
functions:

div(K∇p) =
m−2∑

k=0

k∑
i=0

αk,i(p) ϕk,i, (8)



where the “α” coefficients obviously depend on p. Moreover, since v belongs to V m, its the
trace v|f along the edge f of ∂P is also a polynomial of degree m. Substituting (8) in (7) we
reformulate equation (6) as

Ah,P

(
pI, vI

)
= IP

(
vI, p

)
+

∑

f∈∂P

If

(
vI, p

)
(9)

by introducing the surface integral

IP

(
vI, p

)
= −

m−2∑

k=0

k∑
i=0

αk,i(p)

∫

P

vϕk,i dV, (10)

and the edge integrals associated with each edge f ∈ ∂P

If

(
vI, p

)
=

∫

f

v|fnP,f · K∇p dS, (11)

and both definitions use the degrees of freedom vI of function v. The surface integral in (10)
is expressed in terms of vI if we define the set of internal degrees of freedom of v as the
m(m− 1)/2 integral moments:

vP,k,i =
1

|P|
∫

P

vϕk,i dV, k = 0, . . . , m− 2, i = 0, 1, . . . , k. (12)

Likewise, we can express the edge integral (11) in terms of the degrees of freedom of the
method if we properly define a set of nodal degrees of freedom along each edge f. To such
purpose, we consider the value of v and of its derivatives at the vertices of f so that the trace
v|f is the unique solution of a polynomial interpolation problem using such values as input
data. In subsection 2.3 we discuss how to select the nodal degrees of freedom.

Finally, we require that Ah,P is symmetric bilinear form that satisfies a stability con-
dition that guarantees the correct scaling and kernel and a consistency condition that extends
relation (9) to every mimetic field vh.

(S1) spectral stability: there exists two positive constants σ∗ and σ∗ such that for every
vh,P ∈ Vh,P there holds:

σ∗||vh,P||21,h,P ≤ Ah,P

(
vh,P, vh,P

) ≤ σ∗||vh,P||21,h,P;

(S2) local consistency: for every vh,P ∈ Vh,P and for every p ∈ Pm(P) there holds:

Ah,P

(
vh,P, pIP

)
= IP

(
vh,P, p

)
+

∑

f∈∂P

If

(
vh,P, p

)
. (13)

Property (S1) combined with the boundary conditions implies that the bilinear form Ah is
coercive, thus ensuring the existence of a unique solution to the discrete problem (4). On its
turn, (S2) implies Ah,P

(
vI, pI

)
coincides with AP

(
v, p

)
when both v and p are polynomials

of degree less than or equal to m.



=0, m=1α =1, m=2α =2, m=3α

Figure 1. Degrees of freedom for (α, m) = (0, 1), = (1, 2), = (2, 3). The symbols shown
in the plots represent vertex values (dot), vertex first-order derivatives (one circle), vertex
first- and second-order derivatives (two circles), and polynomial moments (diamonds in the
interior).

Table 1. Edge degrees of freedom for α = 0, 1, 2 and m = α + 1.
m dofs conditions interp. space
1 2v P1(f)

2 2v + 2v′ P3(f)

3 2v + 2v′ + 2v′′ P5(f)

2.3. Nodal degrees of freedom

In Figure 1 we depict the first possible choices of the nodal degrees of freedom on
a pentagonal element. We denote the nodal degrees of freedom associated with the vertex v

through the general notation vv,k,i where the subindex k = 0, . . . , α is the order of the partial
derivative and i = 0, . . . , k indicates the partial derivative with respect to xk−iyi, i.e., ∂v(xv)/

∂xk−iyi. The first (and simplest) choices of nodal degrees of freedom ar illustrated in the left-
most columns of Table 1. In this table, column “dofs” shows the number and kind of degrees
of freedom for the pair (α, m) that is available at edge f; the symbols are the same used in
Figure 1. Column “conditions” shows the type and number of conditions available to build
such polynomial interpolation; v denotes solution values at vertices, v′ = (vx, vy) denotes the
gradient at the vertices, v′′ = (vxx, vxy, vyy) denotes the hessian components at the vertices.
Column “interp. space” show the interpolation space that can be built using the information
available in the previous column. In accordance with the symbols used in Figure 1, the “dots”
indicate point evaluation of a given function and the concentric circles indicate the point eval-
uation of the function derivatives. We use the degrees of freedom vf associated with edge f

to define an interpolation problem that returns the polynomial of maximum degree that can
be determined using vf . To determine vf we impose that the interpolant reproduces the value
of v and of the tangential derivatives of v along f of order up to α (when α > 0) at the edge
vertices v′ and v′′. Hence, we impose (α + 1) conditions at each vertex and the degree of the
interpolant must be equal to (2α + 1).

Let s ∈ [0, |f|] be a local coordinate defined on edge f and such that s = 0 corresponds
to v′ and s = |f| to v′′. The three simplest situations that we discuss below are illustrated in
Table 1.



• For α = 0, we build the unique linear interpolant that satisfies the two conditions on the
function values at the vertices of f:

vf(0) = vv′ , vf(|f|) = vv′′ .

• For α = 1, we build the unique cubic interpolant that satisfies the four conditions on the
function values and the first derivatives at the vertices of f, these latters being denoted by
vv, (vv,x, vv,y) for v =∈ {v′, v′′}:

vf(0) = vv′ ,
vf(|f|) = vv′′ ,
v′f(0) = tf · (vv′,x, vv′,y),

v′f(|f|) = tf · (vv′′,x, vv′′,y).

• For α = 2, we build the 5-degree interpolant that satisfies the six conditions on the func-
tion values and the first and second derivatives at each vertex, these latters being denoted by
vv, (vv,x, vv,y), (vv,xx, vv,xy, vv,yy) for v ∈ {v′, v′′}:

vf(0) = vv′ ,
vf(|f|) = vv′′ ,
v′f(0) = tf · (vv′,x, vv′,y),

v′f(|f|) = tf · (vv′′,x, vv′′,y),
v′′f (0) = H(vv′,xx, vv′,xy, vv′,yy)(tf , tf),

v′′f (|f|) = H(vv′′,xx, vv′′,xy, vv′′,yy)(tf , tf),

where H(vv,xx, vv,xy, vv,yy)(tf , tf) stands for the hessian matrix built using the second deriva-
tives vv,xx, vv,xy and vv,yy at v ∈ {v′, v′′} and applied twice to the vector tf oriented from v′ to
v′′.

In view of the previous definitions, we introduce a generic element of the mimetic
space Vh as the collection of values

vh =
{
(vv,k,i)v∈V,k=0,...,α,i=0,...,k, (vP,k,i)P∈Ωh,k=0,...,m−2,i=0,...,k

}
, (14)

where vP,k,i are the internal degres of freedom introduced in (12), and we define the linear
space Vh as the collection of all such elements (with the obvious definitions of the sum of
two of its elements and of the multiplication of an element of the space by a scalar). We also
define Vh,0 ⊂ Vh as the subspace satisfying homogeneous Dirichlet boundary conditions

Vh,0 =
{
vh ∈ Vh : vv,0,0 = 0 ∀v ∈ ∂Ω, vf,0,i = 0 ∀f ∈ ∂Ω, i = 1, . . . ,Nk

}
.

2.4. Discretization of the load term
(·, ·)

h

Let Pk : L2(P) → Pk(P) be the L2-orthogonal projector of scalar functions onto the
space of polynomials of degree at most k. We denote the projection of f , the forcing term in
the right-hand side of (3), on Pm−2(P) by f̂P, i.e., f̂P = Pm−2(f). Since f̂P ∈ Pm−2(P), we
reformulate it as a linear combination of the basis functions ϕk,i:

f̂P =
m−2∑

k=0

k∑
i=0

ck,i ϕk,i (15)



using the (m + 1)(m + 2)/2 real coefficients ck,i. Then, we define

(
f, vh

)
h

=
∑

P∈Ωh

[
f̂P, vh,P

]
P
,

[
f̂P, vh,P

]
P

= |P|
m−2∑

k=0

k∑
i=0

ck,i vP,k,i,

where we use the coefficients ck,i from (15).

Remark 2.1. For any v ∈ L2(P) and any loading term f ∈ L2(Ω) it holds that

[
f̂P, vIP

]
P

=

∫

P

Pm−2(f)Pm−2(v) dV =

∫

P

f̂Pv dV ∀P ∈ Ωh. (16)

We recall that vIP =
(
v|P

)I, and we note that (16) involves only the internal degrees of freedom
of the interpolant vI.

2.5. Mesh-dependent norms

Let vh,P denote the arithmetic mean of the vertex values of vh,P

vh,P =
1

NV
P

∑

v∈∂P

vv. (17)

Now, we introduce the following mesh-dependent norm for the elements of Vh that includes
higher order terms but mimics the H1(Ω) seminorm:

||vh||21,h =
∑

P∈Ωh

||vh||21,h,P (18)

where

||vh||21,h,P =
∑

f∈∂P

hP

∣∣∣
∣∣∣dvf

ds

∣∣∣
∣∣∣
2

L2(f)
+

α∑

k=1

∑

f∈∂P

h2k−1
P

∣∣∣
∣∣∣∂k

nvf

∣∣∣
∣∣∣
2

L2(f)

+
(
vP,0,0 − vh,P

)2
+

m−2∑

k=1

k∑
i=0

|vP,k,i|2 .

(19)

Above, the symbol vf denotes the reconstructed polynomial on the edge f associated with the
vertex date vh, as described in the previous paragraph. The symbol ∂vf

∂s
indicates the tangential

derivative of vf , while ∂k
nvf indicates the reconstruction of the normal derivatives of order k

for 1 ≤ k ≤ α. This reconstruction is analogous to the one that is made for the definition of
the mimetic bilinear form. In fact, these polynomials are determined uniquely by imposing
that they reproduce all the partial derivatives at v′ and v′′ that can be constructed using all
the available data at the vertices. It turns out that for k = α, i.e., the normal derivative
with maximum order, we only have two conditions to impose, and the interpolation is always
linear. Instead, for 1 < k < α (when α > 1), we can impose more conditions using also the
tangential derivatives of ∂k

nvf(s) along the edge f and evaluated in v′ and v′′, and the degree of
the interpolating polynomial is greater than one.

Note that the seminorms in (19) have a non trivial kernel that represents the constant
functions on P. More precisely, it holds ||vh||1,h,P = 0 if and only if it exists a constant C ∈ R
such that

vP,0,0 = vh,P = C, vv,0,0 = C ∀v ∈ ∂P,



and the remaining degrees of freedom vanish. This is equivalent to say that ||vh||1,h,P = 0 if
and only if vh|P = CI

P for some constant C ∈ R. As a consequence, the global seminorm
||vh||1,h = 0 if and only if vh = CI for some constant C ∈ R, i.e. vh can be represented as
the interpolant of a global constant function. It is therefore immediate to check that the global
seminorm || · ||1,h becomes a norm when restricted to the space with zero boundary conditions
as is the case of the linear space Vh,0.

3. Convergence Analysis

To analyze the convergence of the method, we need to impose shape-regularity con-
straints on the sequence of computational meshes, which relies on the mesh regularity as-
sumption taken from [9,13].

Assumption 3.1 (HG). There exist an integer number N s and a real positive number ρs,
whcih are both independent of h, and a point xP inside every polygonal cell P of every mesh
Ωh, such that

(HG1) every polygon P is star-shaped with respect to xP and has at most N s edges;

(HG2) every polygon P admits a triangular decomposition Sh,P obtained by connecting the
vertices of ∂P to xP;

(HG3) every triangle T ∈ Sh is shape-regular in the sense that the ratio of the radius rT of
the inscribed circle to the diameter hT is bounded from below by ρs:

0 < ρs ≤ rT

hT
.

Such assumptions allow us to have a great generality in the cell shapes and non-convex
cells or degenerate polygons are admissible. Furthermore, all geometric quantities such as
edge lengths and cell areas properly scale with h when h tends to zero. A thorough discussion
about the implications of such assumptions is detailed in [9,13]

Theorem 3.1. Let us assume that u, the solution of the variational problem (3) with g = 0 on
Γ under assumptions (H1)-(H3), belongs to Hm+1(Ω), and let uI ∈ Vh be its interpolation on
the space Vh defined in accordance with 14. Let uh be solution of the MFD problem (4) under
assumption (HG) and (S1)-(S2). Then, there exists a positive constant C, which depends
only on the regularity constants N s and ρs and is independent of h, such that

||uI − uh||1,h ≤ Chm||u||Hm+1(Ω). (20)

The proof of Theorem 3.1 follows the same arguments of the proof of the convergence
theorem in [9] that are based on two theoretical tools: the construction of the lifting operator
and the stability of the interpolation operator. Once such tools have been established, the
proof reported in [9] can be easily adapted to the present case.



Table 2. Mesh parameters of the meshes used in the numerical experiments.

lev NP NF NV h
1 25 120 96 2.915 10−1

2 100 440 341 1.458 10−1

3 400 1680 1281 7.289 10−2

4 1600 6560 4961 3.644 10−2

5 6400 25920 19521 1.822 10−2

6 25600 103040 77441 9.111 10−3

4. Numerical Results

We solve the diffusion problem (1)-(2) on the domain Ω =]0, 1[×]0, 1[ and Dirichlet
conditions assigned on all the domain boundary Γ. The right-hand side f and the boundary
function g are determined in accordance with the exact solution

u(x, y) = x sin(2πx) sin(2πy) + x3y2, (21)

and the constant diffusion tensor

K(x, y) =

(
1 1/4

1/4 1

)
. (22)

We use a sequence of meshes with non-convex elements. The mesh data are reported in
Table 2, where the first column lev shows the refinement level, the second, third and fourth
column, respectively labeled by NP , NF , and NV shows the number of polygons, edges, and
vertices, the fifth column labeled by #dofs shows the number of degrees of freedom, and the
sixth column the value of the mesh size parameter h. The first and the second mesh of this
family are shown in the two plots of Figure 2. The absolute error is measured using the
mesh-dependent norm that is defined in (18)-(19):

Eabs (uh) = ||u− uh||1,h, (23)

and the associated relative error is given by

Eabs (uh) =
Erel (uh)

||uI||1,h

, (24)

where the denominator uses the degrees of freedom associated with the exact solution uh.
The numerical results are shown in Tables 3, 4, and 5, for the schemes corresponding

to (α, m) = (0, 1), (α, m) = (1, 2), and (α, m) = (2, 3), respectively. These tables shows
the refinement label in the first columns (labeled by lev), the number of degrees of freedom
in the second column (labeled by #dofs), the absolute error in the third column (labeled
by Eabs (uh)), the relative error in the fourth column (labeled by Erel (uh)), and the rate of
convergence in the fifth colummn (labeled by Rate). The rate of convergence is evaluated
by comparing the relative errors of each refinement level and of the preceeding one with



Figure 2. First and second mesh used in the numerical experiments.

respect to the number of degrees of freedom. In accordance with the convergence result of
Theorem 3.1, the optimal convergence rate for the approximation errors in (23) and in (24)
that is expected for the scheme defined by (α,m) is proportional to hm. The numerical results
that we obtained are in agreement with the expected behavior of the schemes.

Table 3. Absolute and relative approximation errors in 1h-type mesh norm for (α,m) =
(0, 1); rate is calculated versus the degrees of freedom.

lev #dofs Eabs (uh) Erel (uh) Rate
1 96 2.023 5.344 10−1 −−
2 341 1.301 3.481 10−1 0.676

3 1281 7.382 10−1 2.031 10−1 0.813

4 4961 3.840 10−1 1.076 10−1 0.938

5 19521 1.940 10−1 5.481 10−2 0.985

6 77441 9.719 10−2 2.757 10−2 0.997

5. Conclusions

In this paper, we presented a new family of mimetic methods on unstructured polyg-
onal meshes for the diffusion problem in primal form. These methods are suitable to the
numerical discretization of solutions whoose regularity is Cα(Ω) for any integer α ≥ 0. The
derivation is these mimetic methods is based on a local consistency condition that is exact for
polynomials of degree m = α+1. The degrees of freedom represents both function values and
derivative values of various degree at the mesh vertices and function polynomial moments in-
side the polygons. A theoretical convergence result is also presented. This result that implies
an optimal error estimate in a mesh-dependent norm that mimics the energy norm. Numer-
ical experiments confirmed the convergence rate that is expected from the theory. A more
detailed presentation of this family of mimetic methods will be the subject of a forthcoming
publication.



Table 4. Absolute and relative approximation errors in 1h-type mesh norm for (α,m) =
(1, 2); rate is calculated versus the degrees of freedom.

lev #dofs Eabs (uh) Erel (uh) Rate
1 313 1.625 4.211 10−1 −−
2 1123 4.145 10−1 8.901 10−2 2.432

3 4243 9.712 10−2 1.983 10−2 2.259

4 16483 2.385 10−2 4.815 10−3 2.085

5 64963 5.949 10−3 1.198 10−3 2.028

6 257923 1.488 10−3 2.995 10−4 2.010

Table 5. Absolute and relative approximation errors in 1h-type mesh norm for (α,m) =
(2, 3); rate is calculated versus the degrees of freedom.

lev #dofs Eabs (uh) Erel (uh) Rate
1 651 7.883 10−1 1.744 10−1 −−
2 2346 5.232 10−2 1.054 10−2 4.376

3 8886 2.265 10−3 4.543 10−4 4.722

4 34566 2.323 10−4 4.663 10−5 3.352

5 136326 2.753 10−5 5.528 10−6 3.107
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